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Abstract
A unity of Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) beam
families is proposed by introducing an additional parameter. Continuous
changing of the introduced parameter allows one to transform HG beams
into LG beams in a continuous way, keeping some important properties of
both families, for example, structural stability under propagation. The
generalized beams (called Hermite–Laguerre–Gaussian beams) are
investigated by theoretical and experimental means.

Keywords: Hermite–Gaussian beams, Laguerre–Gaussian beams, mode
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It is known [1] that Hermite–Gaussian (HG) beams

Hn,m(x, y) = exp(−x2 − y2)Hn(
√

2x)Hm(
√

2y)

(n,m = 0, 1, . . .) (1)

and Laguerre–Gaussian (LG) beams

Ln,±m(x, y) = exp(−x2 − y2)(x ± iy)m Lm
n (2x2 + 2y2)

(n,m = 0, 1, . . .) (2)

generate structurally stable solutions of the parabolic equation

∂2 F

∂x2
+
∂2 F

∂y2
+ 2ik

∂F

∂l
= 0. (3)

Here k is the wavenumber and l is the propagation variable.
These beam families play an important part in the theory

of resonators and optical waveguides. It is also known that
every family is a basis for the space L2(R

2). Therefore, an
arbitrary square integrable two-dimensional function may be
presented as a series of HG or LG functions. In particular, any
HG function is a linear combination of LG functions and vice
versa. In a sense, both families are equivalent. On the other
hand, the family symmetries are rather different: namely, HG
beams have a rectangular symmetry, while LG beams have
a rotational symmetry, and the choice of a convenient family
depends on the concrete physical problem.

There are other relations between these two beam families.
In [2] some astigmatic transformation of HG beams into
LG beams was found and investigated by theoretical and
experimental means. The astigmatic transformation may be
used to obtain more a general family of coherent light fields,

named generalized Gaussian beams, or Hermite–Laguerre–
Gaussian beams. This family contains HG and LG beam
families as particular representatives.

We start with two results of an astigmatic transformation
of HG beams. The first result is a simple one and describes
an invariance property of HG beams under the astigmatic
influence function a(ξ 2 − η2):∫ ∫

R2
exp

(
−i(xξ + yη) +

ia(ξ 2 − η2)

ρ2

)

× Hn,m

(
ξ

ρ
,
η

ρ

)
dξ dη = πρ2(−i)n+m

√
1 + a2

× exp

(
− iaρ2(x2 − y2)

4(1 + a2)
+ i(n − m) arctan a

)

× Hn,m

(
ρx

2
√

1 + a2
,

ρy

2
√

1 + a2

)
. (4)

Another result, which was found in [2], is an astigmatic
transformation of HG beams into LG beams with the help of
the astigmatic influence function 2ξη:∫ ∫

R2
exp

(
−i(xξ + yη) +

2iξη

ρ2

)
Hn,m

(
ξ

ρ
,
η

ρ

)
dξ dη

= πρ2(−1)n+m

√
2

exp

(
− iρ2xy

4

)

×



(2i)nm!Lm,n−m

(
ρx

2
√

2
,
ρy

2
√

2

)
(n � m),

(2i)m n!Ln,m−n

(
ρy

2
√

2
,
ρx

2
√

2

)
(n � m).

(5)
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There are various ways to realize the transformation (5)
by means of cylindrical and spherical optical elements. For
example, if we multiply both sides of the equality (5) by
exp(iρ2xy/4) then we obtain the case of an optical scheme
with residual astigmatism compensation. Some experimental
set-ups (mode converters) for transforming HG beams into
LG beams are presented in [2–5]. The main feature of all
converters based on equality (5) is that the angle between
the symmetry axis of the HG beams and the elements of the
cylindrical lenses is α = π/4.

For an arbitrary angle α the astigmatic influence function
is as follows:

ψ(ξ, η, α) = (ξ 2 − η2) cos 2α + 2ξη sin 2α. (6)

Applying this to an HG beam, the result of the
corresponding astigmatic transformation is a specific linear
combination of HG beams (see the appendix in [2] for the
proof):∫ ∫

R2
exp

(
−i(xξ + yη) +

iψ(ξ, η, α)

ρ2

)

× Hn,m

(
ξ

ρ
,
η

ρ

)
dξ dη

= πρ2

√
2

(
1 − i√

2

)n+m

× exp

(
− iρ2ψ(x, y, α)

8

) n+m∑
k=0

ik cosn−k α sinm−k α

× P (n−k,m−k)
k (− cos 2α)

× Hn+m−k,k

(
ρ(x cosα + y sin α)

2
√

2
,

ρ(y cosα − x sin α)

2
√

2

)
, (7)

where

P (µ,ν)

k (t)

= (−1)k

2kk!
(1 − t)−µ(1 + t)−ν

dk

dt k

[
(1 − t)k+µ(1 + t)k+ν

]
are Jacobi polynomials.

Let us define a new function family {Gn,m(x, y|α), n,m =
0, 1, . . .}:
Gn,m(x, y|α)

=
n+m∑
k=0

ik cosn−k α sinm−k α

× P (n−k,m−k)
k (− cos 2α)Hn+m−k,k (x, y)

= e−x2−y2
n+m∑
k=0

ik cosn−k α sinm−k α

× P (n−k,m−k)
k (− cos 2α)Hn+m−k

(√
2x

)
Hk

(√
2y

)
. (8)

Then the equality (7) may be rewritten as follows:∫ ∫
R2

exp

(
−i(xξ + yη) +

iψ(ξ, η, α)

ρ2

)

× Hn,m

(
ξ

ρ
,
η

ρ

)
dξ dη

= πρ2

√
2

(
1 − i√

2

)n+m

× exp

(
− iρ2ψ(x, y, α)

8

)

× Gn,m

(
ρ(x cos α + y sin α)

2
√

2
,

ρ(y cosα − x sin α)

2
√

2

∣∣∣∣α
)
. (9)

Comparing the astigmatic transformation (9) for cases
α = 0 and π/4 with formulae (4) and (5), it is seen that

Gn,m(x, y|0) = (−i)mHn,m(x, y) (10)

and

Gn,m(x, y|π/4)

=
{
(−1)m2nm!Lm,n−m(x, y) (n � m),

(−1)n2mn!Ln,m−n(x,−y) (n � m).
(11)

For this reason, we named Gn,m(x, y|α) Hermite–Laguerre–
Gaussian (HLG) beams.

Intermediate beams Gn,m(x, y|α) keep many important
features of HG and LG beams. First, every beam Gn,m(x, y|α)
is a product of e−x2−y2

and some polynomial in x , y of degree
n + m. For example,

G0,0(x, y|α) = e−x2−y2
,

G1,0(x, y|α) = e−x2−y2
2
√

2(x cosα + iy sin α),

G0,1(x, y|α) = e−x2−y2
2
√

2(x sin α − iy cos α),

G2,0(x, y|α) = e−x2−y2(
8(x cosα + iy sin α)2 − 2 cos 2α

)
,

G1,1(x, y|α)
= e−x2−y2(

(4x2 + 4y2 − 2) sin 2α − 8ixy cos 2α
)
,

G0,2(x, y|α) = e−x2−y2(
8(x sin α − iy cosα)2 + 2 cos 2α

)
.

Secondly, HLG beams are structurally stable under
propagation and focusing because the sum of indices of each
HG component, used in the expansion (8), is one and the
same. Thirdly, and not so evidently, for any fixed α the family
{Gn,m(x, y|α); n,m = 0, 1, . . .} is an orthogonal basis of the
space L2(R

2):∫ ∫
R2

Gn,m(x, y|α)G N,M (x, y|α) dx dy

= 2n+m−1πn!m!δnN δm M . (12)

Here and below, an overline means complex conjugation.
It is interesting to note that the norm of an HLG beam,
‖Gn,m(x, y|α)‖ = √

2n+m−1πn!m!, has no dependence on α.
This is a consequence of the energy conservation law applying
to a Fourier based transformation (9).

To prove the equality (12) we write the transformation (9)
in the form

Gn,m(x, y|α)
=

√
2

π

(
1 + i√

2

)n+m

exp(ix2 − iy2)

×
∫ ∫

R2
exp

(
iψ(ξ, η, α)− 2

√
2iξ(x cosα − y sin α)

− 2
√

2iη(y cosα + x sin α)
)
Hn,m(ξ, η) dξ dη. (13)
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Figure 1. Numerical simulation and experimental realization of HLG beams G5,3(x, y|α) for α ∈ [0, π/4]. The top and middle rows present
intensity and phase theoretical distributions. The black colour corresponds to zero intensity and zero phase, whereas the white colour
corresponds to maximal intensity and phase 2π . A sharp black–white phase jump corresponds to a lacing of 0 and 2π phases. The bottom
row presents experimentally registered intensities. The experimental set-up is the usual cylindrical lens mode converter of HG beams into
LG beams [2], mentioned above. The transformation (9) is realized by the rotation of cylindrical lenses with respect to an input HG beam.

The generating function for Hermite polynomials,

e−s2+2sx =
∞∑

k=0

Hk(x)
sk

k!
,

helps to find the generating function for HLG beams:

G(x, y, α, s, t) =
∞∑

n,m=0

Gn,m(x, y|α) sntm

n!m!

= exp
(−x2 − y2 − ψ(s, t, α) + 2

√
2x(s cos α + t sin α)

+ 2
√

2iy(s sin α − t cosα)
)
. (14)

Then
∞∑

n,m=0

∞∑
N,M=0

(∫ ∫
R2

Gn,m(x, y|α)G N,M (x, y|α) dx dy

)

× sntm

n!m!

S N T M

N !M!

=
∫ ∫

R2
G(x, y, α, s, t)G(x, y, α, S, T ) dx dy

= exp
(−ψ(s, t, α)− ψ(S, T , α)

)
×

∫
R

exp
(−2x2 + 2

√
2x[(s + S) cosα

+ (t + T ) sin α]
)

dx

×
∫

R

exp
(−2y2 + 2

√
2iy[(s − S) sin α

− (t − T ) cos α]
)

dy

= π

2
exp(2sS + 2tT )

= π

2

∞∑
n,m=0

(2sS)n(2tT )m

n!m!
. (15)

The equality (12) follows from the comparison of the
coefficients of first and the last series.

Applying a generating function technique, various
formulae with HLG beams may be found, for example,

recurrent relations:

2
√

2xGn,m = cosαGn+1,m + sin αGn,m+1

+ 2n cos αGn−1,m + 2m sin αGn,m−1,

2
√

2iyGn,m = sin αGn+1,m − cosαGn,m+1

− 2n sin αGn−1,m + 2m cos αGn,m−1;

(16)

derivative relations:
∂Gn,m

∂x
= 2xGn,m − √

2 cosαGn+1,m − √
2 sin αGn,m+1,

∂Gn,m

∂y
= 2yGn,m + i

√
2 sin αGn+1,m − i

√
2 cosαGn,m+1,

∂Gn,m

∂α
= mGn+1,m−1 − nGn−1,m+1;

(17)

and integral moments:∫ ∫
R2

x |Gn,m |2 dx dy

=
∫ ∫

R2
y|Gn,m|2 dx dy

=
∫ ∫

R2
xy|Gn,m|2 dx dy = 0,

∫ ∫
R2
(x2 + y2)|Gn,m |2 dx dy = n + m + 1

2
‖Gn,m‖2,

∫ ∫
R2
(x2 − y2)|Gn,m |2 dx dy = n − m

2
‖Gn,m‖2 cos 2α.

(18)

Here we used a short notation Gn,m for an HLG beam
Gn,m(x, y|α).

Many features of HG beams, LG beams and intermediate
HLG beams are common. However, there is an important
distinction. Both HG and LG beams, excepting trivial cases,
have zero lines, but HLG beams do not. A presence of
zero lines for HG beams is a corollary of their real-valued
structure. LG beams are complex-valued, and the existence of
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zero lines for them is a result of the presence of a Laguerre
polynomial factor. In the case of intermediate HLG beams,
all zeros are isolated points. This is the general situation
for almost all complex-valued functions. Isolated zeros are
points of intersection of real and imaginary parts of these
functions. Such isolated zeros are often named singular points
or phase singularities [6]. Currently, singular optics is a
field of intensive investigation [7, 8]. To classify all possible
zeros is a difficult problem (see, for example, [9, 10]). We
prefer to use a somewhat simpler but less detailed description.
Namely, if a phase circulation around an isolated zero in the
counterclockwise direction is positive, then we call such a zero
positive, or a zero of z type. If the circulation is negative, then
this is a negative zero, or a zero of z̄ type.

Intermediate HLG beams have isolated zeros of both
types. An example of Gn,m(x, y|α) is shown in figure 1. For
α = 0 an HLG beam is an HG beam; its phase has only two
values, 0 and π , and the beam zeros are straight lines. For
α > 0 an HLG beam has real and imaginary components.
Intersection points of zero lines of both components are beam
isolated zeros. A zero motion, as the angle α is changed,
is rather complicated. Some of the zeros of opposite sign
annihilate, but zeros of the same sign stick together and finally
for α = π/4 an LG beam is obtained.

One more result on HLG beams is connected with the
expansion (8). Substituting (10) into equality (8), we get

Gn,m(x, y|α) =
n+m∑
k=0

(−1)k cosn−k α sinm−k α

× P (n−k,m−k)
k (− cos 2α)Gn+m−k,k (x, y|0), (19)

and for α = π/4 three various orthogonal polynomial families
(Hermite, Laguerre, and Jacobi) meet together:

Gn,m(x, y|π/4) = 2−(n+m)/2

×
n+m∑
k=0

(−2)k P (n−k,m−k)
k (0)Gn+m−k,k (x, y|0). (20)

The expansion (20) in various formulations has been found
and discussed in many papers (see, for example, [2, 5, 11]).
However, much more general HLG expansions exist. It may
be found, if we consider Jacobi polynomials as a part of Wigner
d-functions, i.e. functions that are used for the description of
a rotation in three-dimensional space. Namely:

Gn,m(x cosβ − y sin β, y cosβ + x sin β|θ)
=

n+m∑
k=0

λ
(n,m)
k Gn+m−k,k (x, y|α), (21)

where

λ
(n,m)
k = (−1)k

(
cosβ cos(θ − α) + i sin β sin(θ + α)

)n−k

× (
cosβ sin(θ − α)− i sin β cos(θ + α)

)m−k

× P (n−k,m−k)
k

(
sin2 β cos 2(θ + α)

− cos2 β cos 2(θ − α)
)
. (22)

Angular momentum properties of HLG beams are also a
subject of interest. It is known that, in general, a light field
carries some angular momentum which may be transferred
to a captured microparticle, causing its rotation or motion
in a predetermined trajectory. The angular momentum of a

coherent light field F(x, y) with frequency ω is defined as
follows [12, 13]:

L[F] = 1

E

∫ ∫
R2

M(x, y) dx dy, (23)

where

E =
∫ ∫

R2
|F(x, y)|2 dx dy (24a)

and

M(x, y) = 1

ω
Im

[
F

(
x
∂F

∂y
− y

∂F

∂x

)]
(24b)

are the beam energy and the beam angular momentum density
respectively. HG beams have no angular momentum, but LG
beams do. It is interesting to find the angular momentum
L
[
Gn,m(x, y|α)] for any α. Using (12), (16)–(18), we get

L
[
Gn,m(x, y|α)] = n − m

ω
sin 2α. (25)

As is noted above, there is a residual astigmatism in
some optical schemes for astigmatic transformation. Let
usconsider its influence on an HLG beam angular momentum.
The presence of some phase perturbation ϕ(x, y) in the field
F(x, y) changes its angular momentum in the following way:

L[eiϕF]

= 1

ωE
Im

∫ ∫
R2

[
e−iϕF

(
x
∂

∂y
− y

∂

∂x

) (
eiϕF

)]
dx dy

= L[F] +
1

ωE

∫ ∫
R2

|F |2
(

x
∂ϕ

∂y
− y

∂ϕ

∂x

)
dx dy. (26)

For an astigmatic influence ϕ(x, y) = ψ(x, y, β) and an
HLG beam we obtain:

L
[
eiψ(x,y,β)Gn,m(x, y|α)] = n − m

ω
(sin 2α + cos 2α sin 2β).

(27)
In particular, for HG and LG beams the equality (27) reduces
to the following:

L
[
eiψ(x,y,β)Gn,m(x, y|0)] = n − m

ω
sin 2β,

L
[
e2ix yGn,m(x, y|0)] = n − m

ω
,

L
[
eiψ(x,y,β)Gn,m(x, y|π/4)] = n − m

ω
.

(28)

So, the angular momentum of an HG beam depends
on the astigmatic influence, but the angular momentum
of an LG beam cannot be changed by the astigmatic
influence. Therefore, optical schemes with or without residual
astigmatism produce LG beams with one and the same angular
momentum.
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